to food microbiology. Unlike many earlier textbook, this volume is clearly written with the student in mind.

This essential undergraduate textbook contains 26 easy-to-read, well-balanced, solid chapters that cover the basics of food microbiology. Gram-positive foodborne pathogenic bacteria, Gram-negative foodborne pathogenic bacteria, other microbes important in foods, and the control of microorganisms in foods, making this volume easily adaptable for various undergraduate courses being offered in food microbiology and microbial food safety. This tried and tested student-friendly publication not only distills the many intricacies of modern food microbiology into what students really need to know through a list of learning objectives at the beginning of each chapter, but it also prompts much-needed critical thinking through a series of thought-provoking questions at the end of each chapter. The authors have taken an applied approach to their subject and have succeeded in presenting complicated topics (such as the various modes of bacterial pathogenesis) in a very clear, straightforward, and understandable manner, while leaving details of the molecular mechanisms for more advanced courses.

In closing, the second edition of Food Microbiology: An Introduction represents a very timely and easy-to-use contribution to the food microbiology and microbial food safety literature that will no doubt be invaluable to both undergraduate students and instructors.

Elliot T. Ryser, Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan

Plants and the K-T Boundary.

This special issue published by the International Journal of Plant Sciences shows that plant mating systems have always been and still are an active field of research. Indeed, research in plant mating systems is now at the stage when a solid theory exists and technical tools (such as molecular markers) are available for empirical investigation.

The issue, edited by Spencer Barrett, comprises a collection of exciting papers ranging from the ecology to the genomics of plant mating systems. The first part of this book focuses on the various sources and pollination, the second part discusses mating patterns and gender strategies, and the final part examines sexual reproduction and polyphyletic. Although these topics are part of a long tradition, I read the collection in a negative turn of the approach in our understanding of the evolution of plant reproduction. Over the last 30 years, plant mating systems have been conceptualized and dominated by micro-evolutionary processes and a population-centric view, but this volume emphasizes ecological interactions and macroevolutionary patterns such as phylogenetic clades, particularly the patterns provided by Stajic et al. In spite of a broadening perspective, I wish theoretical questions had been more developed. Nevertheless, Schoen and Buch present a theoretical model that analyses the evolution of self-fertilization as a result of group selection, which provides a new perspective in line with the general theme.

To a certain extent, this volume recalls the comprehensive approach that had been adopted by early botanists and that had been forgotten for a while. It is therefore an interesting update and a conceptual development of a 200-year-old field.

Pierre-Olivier Cheptou, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE-CNRS), Montpellier, France

The book has three parts. Part one discusses the history of pollination and paleoanthropology in the western North America, with a focus on the most complete mammalian assemblages spanning the Cretaceous-Tertiary boundary. Part two describes the limit of the Neogene and Paleogene, and the problems of trying to use different organisms to document what presumably was an instantaneous impact of the KT extinctions. Part three, regional case studies, draws considerably from recent work. The final chapter looks at the evidence for a bolide impact in contrast to other hypotheses about the cause of the KT extinctions.

This volume provides an excellent synthesis of how the various processes of plant fossil record informs KT boundary research. Pollen as a stratigraphic tool and megafossils as indicators of climatic change are emphasized, reflecting the authors’ considerable contributions to these areas. It is my opinion that this book will reach an audience interested in clarifying the systemsatics of Cretaceous angiosperms and applying what we know about fossil and floral response to KT events to deducing phylogenetic patterns at the genome level.