Empirical phylogenies and species abundance distributions are consistent with preequilibrium dynamics of neutral community models with gene flow

Anne-Sophie Bonnet-Lebrun,1,2,3,4 Andrea Manica,2 Anders Eriksson,2,5 and Ana S. L. Rodrigues1

1 Centre d’Ecologie Fonctionnelle et Evolutionne CEFEM UMR 5175, CNRS—Université de Montpellier—Université Paul-Valéry Montpellier-EPHE, 1919 route de Mende, 34293 Montpellier cedex 5, France
2 Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
3 Ecole Normale Supérieure, 45 rue d’Ulm, F-75230 Paris, France
4 E-mail: anne-sophie.bonnet-lebrun@cefe.cnrs.fr
5 Integrative Systems Biology Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Kingdom of Saudi Arabia

Received September 26, 2014
Accepted March 4, 2017

Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modeled communities—that is with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities—from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in preequilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under preequilibrium conditions.

KEY WORDS: Gene flow, macroevolution, neutral community models, protracted speciation, point mutation, preequilibrium, phylogenetic tree shape.

Evolutionary studies aim at explaining the diversity of life. However, evolutionary processes are difficult to observe in real time, and the fossil record is extremely incomplete for many groups. Investigating evolution’s results, such as the diversity of species and the phylogenetic relationships among them, can give insights into the underlying processes. Over recent decades, the development of molecular and statistical tools, combined with the systematic sharing of genetic sequencing data (e.g., GenBank; Benson et al. 2005), have fostered an explosion in the number and detail of available phylogenetic trees, including the creation of super-trees covering entire taxonomic groups (e.g., mammals: Bininda-Emonds et al. 2007; and birds: Jetz et al. 2012). Patterns in the shape of phylogenetic trees reflect the macroevolutionary processes through which the diversity of life has been generated.
(signal), but also purely stochastic effects (noise). Because phylogenetic trees are reconstructed rather than directly observed, they are also influenced by the choice of model or decisions by systematists (bias). The quest of disentangling these three signals has motivated a recent emphasis on the study of the characteristics of phylogenetic trees produced under different types of speciation models (e.g., Nee et al. 1994a; Nee 2006; Pigot et al. 2010; Davies et al. 2011; Manceau et al. 2015; Missa et al. 2016). Models allow the formal exploration of processes affecting speciation while controlling for confounding factors (e.g., testing the effect of speciation rates while controlling for community size), thus generating predictions that can be tested by comparison with empirical phylogenetic trees.

Comparing phylogenetic trees generated by different models requires first summarizing their characteristics into meaningful measures. Accordingly, a number of statistics describing tree shape have been proposed (Mooers and Heard 1997; Pybus and Harvey 2000; Blum and François 2005, 2006a; Mooers et al. 2007). Two aspects of tree shape have attracted particular attention in previous studies: tree balance and branching tempo. Measures of tree balance (e.g., Shao 1990; Pybus and Harvey 2000; Blum and François 2006b) reflect the evenness of distribution in species richness among clades. Empirical trees tend to be imbalanced (Heard 1992; Purvis et al. 2011), reflecting differences among lineages in their diversification rates. Branching tempo, the distribution of branching events (i.e., the spacing of internal nodes) over time, reflects variation in differentiation rates (Pybus and Harvey 2000). Empirical trees often have internal nodes relatively close to their root (McPeek 2008; Phillimore and Price 2008; Boettiger and Temple Lang 2012), a pattern frequently interpreted as a slowdown in diversification rates toward the present (Morlon et al. 2010; Moen and Morlon 2014; Morlon 2014), even if recent studies have shown this is not necessarily the case (Boettiger and Lang 2012). By attempting to produce “realistic” phylogenetic trees, that is reproducing these typical characteristics of empirical trees (and either succeeding or failing to do so), models can provide insights into how speciation works.

The simplest models of clade diversification are lineage-based pure-birth (Yule 1925) or birth-death (Kendall 1948) models, whereby a phylogenetic tree is generated as lineages stochastically split (speciation) and (in the case of birth-death models) disappear (extinction) with given homogeneous rates across lineages and across time (e.g., Nee et al. 1992, 1994a,b Morlon et al. 2010, 2011). But these models fail to produce the imbalance and slowdown in diversification rates typical of empirical trees (Table 1), producing instead perfectly balanced trees with either constant diversification rates (in pure-birth models) or with an artefactual increase in speciation rate (the “pull of the present,” in pure birth-death models; Nee 2006; but see Etienne and Rosindell 2012).

These deviations between typical empirical trees and the predictions of simple speciation models may reflect ecological differences between lineages. For example, tree imbalance may result from trait variations across species that affect the probability of speciation or extinction (e.g., floral nectar spurs: Hodges and Arnold 1995), whereas a slowdown in diversification has often been interpreted as evidence of ecological niches being filled after an adaptive radiation (Phillimore and Price 2008; McInerny and Etienne 2012; Wennakes et al. 2012). But previous studies have shown that in some conditions it is also possible to obtain realistic phylogenetic trees from individual-based neutral models (Manceau et al. 2015; Missa et al. 2016), that is without the need to invoke ecological differences between species.

Reviewing the contrasting results of recent studies that have investigated the shape of trees obtained from neutral evolutionary models (Pigot et al. 2010; Davis et al. 2011; Manceau et al. 2015; Missa et al. 2016; Table 1) shed light into the conditions in which realistic phylogenetic trees can (or cannot) be generated. Whereas realistically imbalanced trees were frequently obtained, trees with a typical branching tempo were only generated in out-of-equilibrium scenarios. In Pigot et al. (2010) and Manceau et al. (2015), this out-of-equilibrium dynamics was intrinsic to the models, simulated by considering unbounded communities whose diversity and/or community size could expand indefinitely. In Missa et al. (2016), out-of-equilibrium was a transition phase between the founding event and phylogenetic equilibrium. These results support the hypothesis that the pattern of branching tempo observed in empirical phylogenies reflects out-of-equilibrium dynamics (Manceau et al. 2015; Missa et al. 2016). Both in Manceau et al. (2015) and in Missa et al. (2016), models predicted that as communities approached equilibrium the trees obtained no longer exhibited a typical branching tempo (and see also Hurlbert and Stegen 2014 and Gascuel et al. 2015 for similar results in a nonneutral spatially explicit community models and Liow et al. 2010 for lineage-based models with diversity-dependent diversification). And yet, these studies also found that an out-of-equilibrium dynamics did not always result in realistic trees (Table 1).

These results suggest that to obtain trees with patterns of branching tempo typical of empirical trees, neutral models need to generate an initial burst of diversification followed by a slowdown. For example, in the fixed fission model of Missa et al. (2016), the species descending from the original founding species have an initial population size that is much smaller (5%) than that of the parent species, and are therefore less likely to further diversify than the latter (because their own descendants are even rarer and much more likely to go extinct). We deduce that, as a result, the trees obtained by this model are initially dominated by lineages that descend directly from—and have lower diversification rates than—the founding species, explaining the slowdown
Table 1. Summary of analyses of the shape of phylogenetic trees obtained from neutral models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Speciation mode</th>
<th>Tree balance</th>
<th>Branching tempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure birth model (Yule 1925; Pigot et al. 2010; Morlon 2014). Lineage-based, starts with a single lineage that splits (speciation) with a given probability (constant over time). Zero extinction.</td>
<td>Cladogenesis happens as a lineage splits in two.</td>
<td>$\beta = 0$</td>
<td>$\rho = 0$</td>
</tr>
<tr>
<td>Pure birth-death model (Kendall 1948; Pigot et al. 2010; Morlon 2014). Lineage-based, starts with a single lineage that splits (speciation) or disappears (extinction) with given probabilities (constant over time).</td>
<td>Cladogenesis happens as a lineage splits in two.</td>
<td>$\beta = 0$</td>
<td>$\rho > 0$</td>
</tr>
<tr>
<td>Geographical models of cladogenesis (Pigot et al. 2010). Species-based, spatially explicit. Starts with a single founding species, its range randomly placed into a (finite) landscape, which diversifies into a clade. Species range borders drift at random according to a normal distribution of mean μ (controlling change in average range size: stable for $\mu = 0$, increasing for $\mu > 0$) and variance σ^2 (controlling stochasticity in border position: stable borders for low σ^2; highly variable borders for high σ^2). Once formed, species’ dynamics are independent. Hence, the system does not necessarily reach an equilibrium and the number of species can increase indefinitely.</td>
<td>Geographic speciation through vicariance: pairs of sister species obtained through random bisection of the parent species’ distribution, caused by barriers of random length, randomly placed. Species of intermediate size more likely to speciate (small ranges encounter fewer barriers, larger ranges may not be completely bisected). Widespread species less likely to go extinct (through stochastic range border changes).</td>
<td>Generally $\beta > 0$ but $\beta < 0$ obtained for high rates of range expansion.</td>
<td>Generally $\rho \geq 0$, but $\rho < 0$ obtained for high rates of range expansion.</td>
</tr>
<tr>
<td>Geographical speciation through peripatry: a new species forms from through dispersal, as a peripheral isolate outside the ancestor’s range. Probability of speciation larger for species with larger range perimeter. New species have small ranges (on average, 0.25% of total area; compared to 9% for the founding species).</td>
<td>Generally $\beta > 0$ but $\beta < 0$ when ranges are very stable ($\mu = 0$, low σ^2).</td>
<td>Generally $\rho > 0$, but $\rho < 0$, when ranges are very stable ($\mu = 0$, low σ^2).</td>
<td></td>
</tr>
<tr>
<td>Individual-based neutral community models, at equilibrium (Davies et al. 2011). All individuals are equivalent in their rates of birth, death, dispersal, and speciation. Communities have a limited (fixed) size so individuals compete for space/resources. Both spatially-implicit and spatially explicit models tested (with similar results). Starts from a monospecific community. Results are for equilibrium conditions.</td>
<td>Point mutation: one randomly selected individual becomes a new species.</td>
<td>$\beta < 0$ for a range of speciation and migration rates</td>
<td>$\gamma > 0$</td>
</tr>
<tr>
<td></td>
<td>Equal splits fission mutation: half of the individuals (randomly selected) in parent species assigned to a new species.</td>
<td>$\beta < 0$ only for large mutation rates</td>
<td>$\gamma > 0$</td>
</tr>
<tr>
<td></td>
<td>Random fission mutation: a random percentage (0–50%) of randomly selected individuals from the parent species is assigned to new species.</td>
<td>$\beta > 0$</td>
<td>$\gamma > 0$</td>
</tr>
<tr>
<td></td>
<td>Fixed incipient species abundance: 10 individuals become a new species.</td>
<td>$\beta < 0$</td>
<td>$\gamma > 0$</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Model</th>
<th>Speciation mode</th>
<th>Tree balance</th>
<th>Branching tempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual-based neutral community model with speciation by genetic differentiation (Manceau et al. 2015). Spatially implicit. All individuals are equivalent (in their rates of birth b, death d, and mutation v). Community size is unbounded, and thus does not necessarily reach an equilibrium; positive growth rates if $b > d$.</td>
<td>Speciation by genetic differentiation: genetic mutations with rate v give rise to a new genetic type. Speciation happens when two system populations no longer contain individuals of the same genetic type. Speciation thus takes time. Speciation rates are an emergent property of the model dynamics.</td>
<td>Wide range of β values, including $\beta < 0$ when population expanding (preequilibrium dynamics)</td>
<td>Wide range of γ values, including $\gamma < 0$ when population expanding (preequilibrium dynamics)</td>
</tr>
<tr>
<td>Individual-based neutral community models, at preequilibrium (Missa et al. 2016). All individuals are equivalent in their rates of birth, death, dispersal, and speciation. Spatially explicit model. Communities have a fixed size so individuals compete for space/resources. Results are from the foundation event (monospecific community) to equilibrium conditions.</td>
<td>Point mutation: one randomly selected individual becomes a new species</td>
<td>$\beta < 0$</td>
<td>$\gamma > 0$</td>
</tr>
<tr>
<td></td>
<td>Random fission mutation: a random percentage (0–50%) of randomly selected individuals from the parent species assigned to new species.</td>
<td>$\beta \geq 0$</td>
<td>$\gamma < 0$ during an initial, preequilibrium phase, then increasing to $\gamma > 0$</td>
</tr>
<tr>
<td></td>
<td>Fixed fission: 5% of individuals (randomly selected) from the parent species assigned to new species</td>
<td>$\beta < 0$</td>
<td>$\gamma < 0$ during an initial, preequilibrium phase, then increasing to $\gamma > 0$</td>
</tr>
<tr>
<td>Individual-based neutral community models, at preequilibrium (this article). All individuals are equivalent in their rates of birth, death, dispersal, and speciation. Spatially explicit model. Communities have a fixed size so individuals compete for space/resources. Results are from the foundation event (monospecific community) to equilibrium conditions.</td>
<td>Point mutation: one randomly selected individual becomes a new species</td>
<td>$\beta < 0$</td>
<td>$\gamma > 0$</td>
</tr>
<tr>
<td></td>
<td>Protracted speciation: populations assigned a speciation clock, decreasing at each time step and delayed by migration events from the same species. Populations become a new species when their clock reaches zero.</td>
<td>$\beta < 0$</td>
<td>$\gamma < 0$ during an initial, preequilibrium phase, then increasing to $\gamma > 0$</td>
</tr>
</tbody>
</table>

In each case, modeled trees are described in terms of: balance (β) and diversification rates over time (γ or ρ). Values in bold correspond to the characteristics usually found in empirical trees ($\beta < 0$; $\gamma < 0$ or $\rho < 0$). β and γ are defined in the main text. ρ measures temporal shifts (proportional differences) in diversification rates between an early and a late section of the phylogeny.
in diversification rates in preequilibrium trees (the signal of this basal radiation being then progressively eroded as demographic stochasticity generates a wider range of abundances among the species in the community). We expect an even more pronounced radiation with the model of cladogenesis through peripatry of Pigot et al. (2012) with stable range sizes. Indeed, in this case the founding species remains throughout the simulations much more widespread than its descendants, and is thus at the origin of most speciation events.

Whereas these results demonstrate that realistic trees can be obtained through neutral models, it is difficult to find real-life parallels to the particular assumptions that made these results possible. Pigot et al. (2010) and Manceau et al. (2015) assumed communities to be unbounded in diversity and/or community size, which is unlikely to reflect the conditions in which most real phylogenies diversified. Missa et al. (2016) demonstrate that such assumption is not necessary, but obtained phylogenies with a typical branching tempo only with a particularly rigid type of speciation (fixed fission, whereby 5% of the individuals of the parent species are assigned to the new species; but not for random fission mutation, where 0–50% of all individuals become a new species).

The results by Pigot et al. (2010; for peripatric speciation) and by Missa et al. (2016; for fixed fission) both suggest the need for a speciation mechanism allowing a founding widespread species to radiate into a diversity of species with small-but-not-too-small populations–sufficiently numerous to have a reasonable likelihood of persisting, but not too abundant so that they do not become themselves the basis of a highly diverse lineage. Here, we propose that local speciation (whereby small and relatively isolated populations become new species) may be such a mechanism, and that this may be obtained as an emergent property in neutral community models if these incorporate gene flow under the realistic scenario of a spatially structured environment.

To test this hypothesis, we develop a neutral, individual-based community model with gene flow, building from the work of Rosindell et al. (2010), Rosindell and Phillimore (2011), and Gascuel et al. (2016) on protracted speciation. Rosindell et al. 2010 first introduced the concept of protracted speciation to take this into account the fact that speciation takes time. This was originally implemented simply by adding a delay to point mutation, such that it takes time between an individual beginning to speciate and it becoming a full species. Applied to lineage-based models, it avoids the “pull of the present” artefact and results in phylogenies with a typical slowdown in diversification toward the present (Etienne and Rosindell 2012). However, speciation takes time not only because of the time needed to accumulate significant genetic differences between populations (to allow for the evolution of reproductive barriers) but because of the homogenising effects of gene flow between populations. To take this into account, Rosindell and Phillimore (2011) subsequently proposed a spatially explicit individual-based neutral model (based on a mainland-single island system) with protracted speciation delayed by gene flow. This model allowed local speciation to occur in islands sufficiently close to the mainland to be colonised from the mainland, but not so close that gene flow prevents speciation. Gascuel et al. (2016) extended this model to a mainland-archipelago system, showing how the spatial structure caused by gene flow substantially increased levels of island speciation in relation to a similarly sized but unstructured community.

Here, we consider a chain of demes as an example of a spatially structured community, initially colonised by a single species. We then investigate the characteristics of neutral communities structured by gene flow as they diversify, analysing in particular if the phylogenetic trees obtained are similar to those of empirical bird and mammal trees in terms of balance as well as branching tempo. As a further test to the realism of these communities, we also investigate their composition, as assessed by species-abundance distributions (SADs; histograms representing the number of species in each class of abundance) (McGill 2003). We characterize the effects of gene flow by comparing two speciation modes: protracted speciation with gene flow versus and point mutation (in which gene flow has no effect). Given the results from previous model studies, we expect that, even in the presence of spatial structure with gene flow, phylogenies will have a realistic branching tempo only during the preequilibrium dynamics: thus, we analyze the results of the simulations over time, from the single-species foundation events until the modeled communities reach ecological and evolutionary equilibrium. Furthermore, we expect that the initial range of the founder species—affecting the likelihood that it will generate a rapid initial radiation—should play an important role in shaping the resulting phylogenies. We test this hypothesis by contrasting three different scenarios: a founder species that has invaded a virgin environment and whose range covers all available demes (i.e., a first-wave colonization); a founder species that has colonised an environment where its competitors already occupy most of the available habitat (second-wave colonization); and a founder species that has colonized an environment in which its competitors already occupy half of the available space (mixed colonisation). We investigate the sensitivity of predicted community characteristics to the key model parameters that govern community size, speciation, and dispersal rates. Finally, given that the shape of empirical phylogenetic trees, to which our model outputs are compared, may be affected by methodological biases (Davies et al. 2011; Moen and Morton 2014) mostly due to tree incompleteness (Cusimano and Renner 2010; Brock et al. 2011; Höhna et al. 2011), we tested the effect of tree incompleteness on the properties of the phylogenies produced by the models.
Methods

NEUTRAL COMMUNITY MODELS

We simulated communities using individual-based neutral models (sensu Hubbell 2001), where all individuals are equivalent in their probabilities of dying, reproducing, and dispersing. We used a spatially explicit framework, with a one-dimensional set of demes (e.g., islands) connected by migration between adjacent demes (i.e., a one-dimensional stepping stone). The total population size was finite and constant, with a fixed number of individuals, K, per deme.

To reduce computational time, we departed from Hubbell (2001) by modeling communities with nonoverlapping generations: at each time step (i.e., one generation), all the individuals died and were replaced. Each individual in a new generation descended, with probability $1-m$, from a randomly sampled individual from the same deme, and with probability m (migration) from a randomly sampled individual in an adjacent deme (i.e., from neighbors on both sides, with equal probability, except for islands at the two ends of the chain, which receive all migrants from a single neighbor).

We integrated the effects of gene flow by modeling speciation as protracted (Rosindell et al., 2010, 2011), whereby new species form after populations are isolated long enough for genetic differentiation to occur, with gene flow slowing this process down. To model speciation as a process that takes time, we assigned to each population (i.e., individuals of the same species in a given deme) a speciation timer. Whenever a population first became isolated (i.e., it colonized a new deme), the timer was set to T_{sp}, the time to speciation. It then decreased a unit step with each generation, with the population becoming a new species when the timer reached zero. This process was however delayed by gene flow due to migration from other demes. Hence, whenever one or more migrants of a given species arrived to a deme with an already existing population of the same species, we added to the speciation timer of this resident population a (noninteger) value calculated as $T_{delay} \times N_m/N_i$, where T_{delay} is the time delay induced by migration, N_m is the number of migrants and N_i is the size of the resident population. We were able to apply this method because we simulated communities forward in time, and thus knew each species’ abundance at any point in time (such approach would not have been possible if we had modeled communities through coalescence, as in Rosindell et al. 2011; Gascuel et al. 2016). Speciation was irreversible: once a population’s timer reached zero, it became a new species and no longer connected by gene flow to other populations that were previously of the same species.

We contrasted the results of our model with those obtained through a similar neutral model without gene flow, were speciation was instead modeled through point mutation (e.g., Hubbell 2001; Ricklefs 2003; Chave 2004; Etienne 2007; Davies et al. 2011). In this model, each individual in a new generation had a given probability ν of becoming a new species, and so the number of founding individuals in each species always equalled one.

All simulations were run in Julia 0.3.10 (Bezanson et al. 2017). We ran 10 stochastic simulations for each set of parameters. For each simulation, we recorded, every 20 generations, the state of the modeled community including, for each species: its ID; the ID of its mother species; its date of birth (time when its speciation clock ticked to 0); and, if the species went extinct during the previous 20 generations, its date of death. We used this information to build phylogenetic trees in Matlab (The MathWorks, Inc., 2010) and R 3.2.2 (R Development Core Team 2015) with the extant species at each time step, from which we could quantify tree shape (β and γ metrics, see below for details) and SADs (see below for details). The Julia code is provided in Supplementary Materials.

MAIN MODEL PARAMETERS

We did an initial exploration of the model with protracted speciation to find a combination of parameters that generated communities of reasonable size while not taking a long time to reach equilibrium, that is with a combination of m, T_{sp}, and T_{delay} such that speciation occurred with reasonable frequency, and with K and N not so large that the simulations took too long to run given our computational capacity. We thus selected as model parameters $N = 40$ demes, each with a carrying capacity $K = 250$ individuals, a migration rate $m = 0.05$, time to speciation $T_{sp} = 150$, and the delay penalty for immigration $T_{delay} = 14$. With this set of parameters, each simulation took one day on a PC with an Intel(R) Xeon(R) CPU E5-2623 v3 3GHz and 64 GB Ram. We call this the “main” model, to distinguish it from various modifications outlined below. We then selected a speciation rate $\nu = 0.0002$ for the point mutation model, which for the same values of N, K, and m generated communities with similar numbers of species (≈ 33) to those obtained with protracted speciation, thus allowing comparisons between the two speciation models.

In this version of the model, all demes were initially filled with the same species, and the community then diversified through speciation (subsequently called “first wave colonization”). The ecological analogy to this setting would be the first colonization of an empty archipelago by a single species, from a very remote mainland, in which the species initially colonizes the entire archipelago before going on to speciate. The archipelago is “empty” in the sense that all resources are available to the colonising species, which thus faces no competition with individuals of any previously established species (e.g., if a frugivore species colonises an archipelago where there are no native frugivores).
METRICS OF TREE SHAPE

Tree balance was estimated using \(\beta \) (Blum and François 2006) from Aldous’ \(\beta \)-split model of clade growth (Aldous 2001). The \(\beta \)-splitting family is a single parameter family of branching processes. \(\beta \) is estimated by maximum likelihood methods based on the cladogram. Its expected value under the constant-rate pure-birth model (Yule model) is zero, with negative values for trees that are more imbalanced than the average prediction of the Yule model (Fig. S1A), and positive values for trees that are more balanced (Fig. S1B). Compared to other measures of tree balance (Shao 1990; Mooers and Heard 1997), \(\beta \) is unbiased with respect to species richness, allowing for the comparison of trees of different sizes. Accordingly, it is a commonly used measure in studies of phylogenetic tree shape (e.g., (McPeek 2008; Phillimore and Price 2008).

We assessed the branching tempo through Pybus and Harvey’s \(\gamma \) index (Pybus and Harvey 2000), measuring the distribution of internal nodes along the time axis of the phylogenetic trees. Under the Yule model, \(\gamma \) follows a standard Gaussian distribution (Yule 1925). Positive values are obtained when the internal nodes are closer to the leaves than under the Yule model, interpreted as an acceleration in diversification rates toward the present. Negative \(\gamma \) are obtained when internal nodes are closer to the roots, and are often interpreted as sign of a decrease in diversification rates with time, either an early burst of diversification or a slowdown near the present (Fordyce 2010; Morlon et al. 2010). Both the tree balance and the branching tempo were assessed for the trees containing only the extant species.

All analyses of the trees (stored in parenthetic format) were made in R, using the “apTreeshape” package (Bortolussi et al. 2006).

SPECIES-ABUNDANCE DISTRIBUTIONS

SADs for real communities tend to be approximately lognormal (Preston 1962; Hubbell 2001). To check if the communities produced by the models were realistic, we built SADs by combining results across a given time period (e.g., for a given simulation, with a given set of parameters, we obtained a SAD from \(t = 1020 \) to \(t = 2000 \) by pooling all 40 communities obtained every 20 time steps within this interval). We present SADs averaged across the ten simulation runs (replicates) for each set of parameters values, using a Preston plot (a semi-log representation following Preston 1962).

EMPIRICAL PHYLOGENETIC TREES

For comparative purposes, we calculated values of \(\beta \) and \(\gamma \) for two sets of empirical trees, one for birds (29 trees), and one for mammals (112 trees). The bird trees were the subset of the 129 trees in Jetz et al. (2012; their supplementary data) corresponding to trees with between 10 and 40 species (number of species: median = 24.00, Q1 = 16.00, Q3 = 33.00; tree age: median = 0.24 million years [My], Q1 = 0.17 My, Q3 = 0.47 My). The mammal trees were all subclades with 10–40 species from a mammalian super tree developed by Bininda-Emonds et al. (2007; first extended by Fritz et al. 2009 and then by Rodrigues et al. 2011 to include all living mammals) at the level of genus (number of species: median = 14.50, Q1 = 12.00, Q3 = 19.75; tree age: median = 14.35 My, Q1 = 9.07 My, Q3 = 20.40 My) or family (number of species: median = 17.50, Q1 = 14.25, Q3 = 26.00; tree age: median = 25.40 My, Q1 = 18.42 My, Q3 = 31.07 My). We chose trees with between 10 and 40 species to ensure that they are of a generally similar size to our modeled trees (33 species). Although these empirical trees were obtained from what are likely the most complete phylogenies available, they are nonetheless incomplete, particularly for mammals (Reeder et al. 2007; Fjeldsa 2013).

EFFECTS OF MODE OF SPECIATION ON COMMUNITY CHARACTERISTICS

We contrasted communities simulated with the main model parameters and first wave starting conditions under the two modes of speciation described above—protracted versus point mutation. Each simulation ran for 80,000 generations, long enough to reach both ecological equilibrium (stable number of species) and phylogenetic equilibrium (stable tree shape as measured by both \(\beta \) and \(\gamma \)). We recorded the state of the modeled communities at intervals of 20 generations, allowing us to investigate how tree shape and SADs varied over time, from the founding event (i.e., when the set of demes is first colonized), to equilibrium. We then averaged results across 10 replicates. In the figures, we represent average values over 400 generations.

SENSITIVITY TO RANGE OF THE FOUNDER SPECIES

To test the extent to which results were affected by the range of the founder species considered in the main model (first wave colonization), we have also simulated communities obtained through protracted speciation starting from under two very different starting conditions: second-wave and mixed colonization.

In the second wave setting, the archipelago was previously filled with individuals whose species was not recorded. In two adjacent demes, we then replaced all individuals from the initial community with individuals of a new founder species of an unrelated lineage, and tracked its fate. We did not track the speciation process of the previously stabled lineage (which does not influence the fate of the tracked lineage), only its demographics (as competition between the individuals of the two lineages affected the demographics, and thus the diversification of the new lineage). The new lineage often went quickly extinct, but sometimes it expanded and diversified, producing a new community with its own phylogeny and SAD. We analyzed successfully established
second wave lineages, defined as the daughter lineages of the newly introduced lineage. The ecological analogy of this model is the colonization of an already saturated archipelago by a species taxonomically unrelated to those already in place, but occupying the same ecological niche (such that individuals of the two lineages are in direct competition).

In the mixed starting conditions, we simulated a situation intermediate between first and second wave colonisations. As in the second wave setting, we started with a saturated system, but the newly introduced lineage was allowed to occupy immediately 20 adjacent demes out of the 40 demes (i.e., half of the available space).

SENSITIVITY TO MODEL PARAMETERS

We found the first wave colonization scenario to generate the most realistic phylogenies, so we used this scenario to thoroughly investigate the effect of different parameters on the shape of the resulting phylogenies. We explored the following ranges of values for each parameter independently, while keeping all other parameters fixed to the values for the main model (i.e., $N = 40$, $K = 250$, $m = 0.05$, $v = 0.0002$, $T_{sp} = 150$, $T_{delay} = 14$): {0.01, 0.03, 0.05, 0.07} for m; {100, 150, 200} for T_{sp}; {10, 12, 14, 15, 16} for T_{delay}; and {0.0001, 0.0002, 0.0003, 0.0004, 0.0005} for v. We also tested our results held with higher values of carrying capacity (250, 500, 750, 1000) for K.

EFFECT OF INCOMPLETE TREES AND SAMPLING

The shape of empirical phylogenetic trees may to an extent reflect methodological biases (Davies et al. 2011; Moen and Morlon 2014). In particular, real trees are often incomplete, even among well-known taxa, as substantial fractions of species remain undescribed. Tree incompleteness has been shown to influence tree shape (Cusimano and Renner 2010; Brock et al. 2011), particularly when the sampling of nodes is not random (e.g., impact of oversampling older/younger nodes on the distribution of branch lengths, Höhna et al. 2011). We therefore tested the effect of tree incompleteness on the properties of the models produced by the models.

We simulated incomplete trees by removing one third of the species from those trees that had been obtained from the first wave model with protracted speciation. We tested two ways in which empirical trees are likely to be incomplete: by removing the rarest species (with the smallest number of individuals; less likely to be known to science and/or to be represented in the molecular databases used to build the empirical trees); and by removing the youngest species (more likely to be cryptic species, not yet differentiated from currently described species). Even though the youngest species tend to be rare (their initial abundance cannot exceed the deme size), these two sets of species are not necessarily the same, as the rarest species are not necessarily the youngest.

As controls, we also investigated the effects of removing one third of all species, uniformly selected among all extant species.

Results

EFFECT OF MODE OF SPECIATION ON COMMUNITY CHARACTERISTICS

Given the same parameters for community size (N, K) and migration rate (m), the same initial conditions (first wave), and a careful selection of speciation parameters (v, T_{sp}, T_{delay}) to ensure that a similar number of species was obtained in both cases (≈ 33), speciation type had quantitative but not a qualitative effect on the equilibrium shape of the phylogenetic trees produced by our spatially explicit individual-based neutral community models. Indeed, with the protracted speciation model, the values of γ and β tended, respectively, toward 6.08 (95% interval: 3.75–7.84, all values calculated over generations 70,000–80,000 for all simulations) and --0.50 (--1.47–4.69) (Fig. 1A, C), and with the point speciation model, they tended toward 7.49 (5.22–9.38) and --0.99 (--1.71–3.97) (Fig. 1B, D). In both cases, models reached ecological equilibrium (i.e., stable number of species) much faster than phylogenetic equilibrium (i.e., stable values of γ and β) (Fig. S2).

There were however important differences in the shape of phylogenetic trees during preequilibrium phrase. In particular, whereas in point mutation communities γ values were always positive (Fig. 1B), protracted speciation led to a short initial phase (ca. 2000 generations) during which phylogenetic trees spanned the full range of the (mostly negative) empirical γ values (Fig. 1A).

The SADs of communities differed markedly between speciation types, being highly skewed to the left in communities produced by point mutation (a large number of singletons and rare species) and approximately log-normal in communities obtained through protracted speciation, both in the preequilibrium phase and after the system became stable (Fig. 1G–H).

SENSITIVITY TO RANGE OF THE FOUNDER SPECIES

In protracted speciation models with second wave starting conditions, the large majority of simulations resulted in the rapid extinction of the colonizing lineage; lineage survival was higher for mixed initial conditions (Fig. 2). In both cases, the long-lived lineages (that survived past 70,000 generations) tended to produce communities with similar properties to those obtained for first wave conditions at equilibrium, in terms of tree shape ($\gamma \approx 6$ Fig. 2A--B; β generally slightly negative, Fig. 2C--D), community size (≈ 30 species, Fig. 2E--F), and realistic SADs (Fig. 2G--H). Communities during the preequilibrium phase also had realistic SADs (Fig. 2G--H) but values of γ (Fig. 2A--B) and β (Fig. 2C--D) were less realistic than those obtained for the first wave colonisation.
Figure 1. Effect of speciation type—protracted (left column) versus point mutation (right column)—on tree shape (gamma γ statistic, characterizing the distribution of branch length across time, (A and B); and beta β statistic, characterising balance; (C and D); community size (number of species; E and F) and community composition (species-abundance distributions, SAD; G, H), in communities obtained from individual-based neutral models, compared with empirical values. Model parameters are: number of demes $N = 40$; carrying capacity of each deme $K = 250$; migration rate $m = 0.05$; in protracted speciation models: $T_{sp} = 150$, time delay $T_{delay} = 14$; in point mutation models, speciation rate $\nu = 0.0002$; initial conditions: all demes occupied by a single species (first wave colonisation). In (A–F), dark lines represent the median of the statistics, with the first and third quartiles represented by the dashed line, smoothed by calculating the mean value in a 400 time steps interval; gray bands represent the whole range (lighter) and the 50% interval of empirical values (darker), and the horizontal dashed line the median, for empirical values obtained from 29 bird phylogenies and from 112 mammal phylogenies. In G–H, each histogram represents the SAD for the time interval between brackets, obtained by pooling all communities obtained every 20 time steps within this interval, and averaging across 10 simulations, with the n^{th} bin corresponding to abundances between 2^{n-1} and 2^n; error bars for each class represent the standard deviation around the mean.
conditions (Fig. 1A–B), with \(\gamma \) still reaching negative values during the early part of the simulations but for an ever shorter period (particularly for the second wave colonization scenario) and \(\beta \) behaving more erratically. Overall, then, the larger the range of the initial founder species (in decreasing order first wave, mixed, and second wave colonization) the more realistic the phylogenies obtained.

SENSITIVITY TO MODEL PARAMETERS

The shape of communities simulated through individual-based neutral models with protracted speciation (first wave initial conditions) was robust to variation in the model’s parameters. Indeed, for all values tested, we continued to obtain realistic (slightly negative) values of \(\beta \), realistic (log-normal-like) SADs, and values of \(\gamma \) that span realistic (negative) empirical values but only during
Figure 3. Effect of model parameters on tree shape (gamma γ statistic A–E; and beta β statistic F–J); community size (K–O) and community composition (species-abundance distributions, SAD; P–T), in communities obtained from individual-based neutral models with protracted speciation, in preequilibrium conditions (\leq 8000 generations). The parameters tested were: migration rate (m), carrying capacity (K), number of demes (d), time to speciation (T_{sp}), and time delay (T_{delay}). Colored lines correspond to median values of the 10 replicates. In each column, we varied the specific parameter being tested while keeping all other parameters as in Figure 1. SADs obtained as histograms with the same class intervals as in Figure 1, represented here as lines to facilitate comparisons.
the initial, preequilibrium, phase (Fig. 3). Variation in model parameters had nonetheless some quantitative effects: higher values of the migration rate m (Fig. 3A) and, to a lesser extent, lower values of time delay T_{delay} (Fig. 3E) prolonged the time needed for reaching ecological and phylogenetic stability, and so the duration of the period during which negative γ values were obtained. An increase in the number of demes N resulted in the initial values of γ to be even more negative, but it did not affect the duration of the phase during which γ values remain negative (Fig. 3C). Lower values of m and higher carrying capacity led to higher species richness.

EFFECT OF INCOMPLETE TREES AND SAMPLING

Pruning the tree to mimic incomplete sampling increased substantially the duration of the phase during which communities obtained through protracted speciation (first wave initial conditions) had realistically negative values of γ (Fig. 4A). This was true for all types of pruning, but particularly noticeable for pruning of the youngest species (where negative γ values were obtained for about 5000 generations, compared with about 2000 for the full tree). Pruning slightly increased β values, but these remained generally slightly negative on average, and within the range observed in empirical trees (Fig. 4B). The shape of SADs was only noticeably affected by the rarest species pruning scheme, which, by definition, led to a lack of rare species (Fig. 4D).

Discussion

Our results support previous studies in showing that it is possible to obtain realistic phylogenetic trees from individuals-based neutral models (Manceau et al. 2015; Missa et al. 2016). As in these previous studies, it was only in preequilibrium circumstances that we were able to obtain realistic trees, in particular when it came to obtaining realistic branching tempo (γ), thus lending further weight to the hypothesis that the shape of real trees may at least in some cases reflect preequilibrium dynamics (Manceau et al. 2015; Missa et al. 2016). There is a growing body of evidence that real communities are often not at equilibrium, with lineage-through-time plots for empirical trees typically not showing evidence of equilibrium dynamics (Morlon 2014). This may reflect clades that are still young (at preequilibrium, or having just reached equilibrium recently; Rabosky and Glor 2010) or the effects of carrying capacity changing as a response to changing environmental conditions (Quental and Marshall 2013).

We also found that preequilibrium conditions, per se, do not guarantee realistic tree shapes (Missa et al. 2016; Davies et al. 2011). Like Pigot et al. (2010), Manceau et al. (2015), and Missa et al. (2016), we were only able to obtain realistic trees for particular speciation modes, but our model is more realistic than those of previous studies. Indeed, unlike in Pigot et al. (2010) and
Manceau et al. (2015) we were able to obtain realistic tree shapes without needing to allow for ongoing community expansion, instead retaining the more realistic zero-sum assumption of neutral community models. In our simulations, like in Missa et al. (2016), the total number of individuals does not vary, showing that an expanding community size is not a necessary condition for obtaining realistic trees. But unlike in the fixed fission model of Missa et al. (2016), where the rate and form of cladogenesis is an input, in our model cladogenesis is an emergent property of the system, with local speciation occurring whenever populations are sufficiently separated in space that the effects of genetic drift (as modeled by the parameter T_{sp}) overcome the effects of gene flow (controlled by m and T_{delay}). Even though we were only able to obtain realistic trees (in terms of branching tempo) during a relatively short transition phase soon after the founding effect, we were able to reproduce these results for a wide variety of model parameters (Fig. 3). We found this transition phase is particularly extended in communities that are more interconnected (with higher levels of migration rates, m) and, to a lower degree, for which it takes longer for species to separate (higher time delay, T_{sp}), although if any of these parameters becomes too extreme speciation ceases completely. In fact, these two parameters are connected, as for both higher m and higher T_{sp}, it takes longer for speciation to happen. Higher m also leads to lower extinction rates. Both effects thus slow down the dynamics of the system. Furthermore, we show that the communities produced by our neutral model have realistically shaped species-abundance distributions, including during the preequilibrium phase (Fig. 1H). We also show that in many conditions, species richness increases before decreasing and then stabilizing. Such overshoots have been documented in empirical systems (e.g., spider clades in the Hawaiian islands, where species richness is the highest on islands of intermediate age, Gillespie and Baldwin 2009) and in nonneutral individual-based models (Gavrilets and Vose 2005). In our models, the overshoots are more obvious in conditions when species richness is limited, which happens in particular when m or T_{delay} are high (because of the homogenising effect of gene flow, preventing the speciation clock to reach zero) and for low rather than high carrying capacity.

Previous studies on lineage-based models have found that incomplete trees have lower γ values (Cusimano and Renner 2010; Brock et al. 2011). Our analysis extends this to trees generated by individual-based neutral community models (Fig. 4A). We also found that this effect was particularly noticeable when the missing species were the rarest or the youngest in the tree. It is plausible that empirical phylogenetic trees are biased in this way: rare species are more likely both to have not yet been described and to have been more affected by premature anthropogenic extinction, and young species are more likely to be difficult to differentiate from others and so to have been missed by taxonomists. Coherent with these hypotheses, in our sample of empirical trees the mammal phylogenies have on average more negative values of γ than bird phylogenies (respectively, $\gamma = -3.1$ and $\gamma = -1.4$), as expected given that the former are known to be more incomplete than the latter (Reeder et al. 2007; Fjeldså 2013). In our models, tree incompleteness on its own was not sufficient to drive γ below zero in communities at equilibrium, but in protracted speciation models tree pruning increased substantially the time during which realistically negative γ values were obtained (Fig. 4A).

Our results were highly dependent of the initial conditions (Fig. 2). As in Missa et al. (2016), our main model considers a scenario where the initial conditions consist of a single species occupying the entire territory and then differentiating. As these populations all start to speciate at the same time, an initial radiation is generated at the base of the phylogenetic tree. Given that each of these new species has a lower probability of speciation than the original one, the subsequent slowdown in speciation rates generates the negative values of γ we observed. A similar process likely occurs in Missa et al.’s (2016) fixed fission model as well as in the vicariance model by Pigot et al. (2010). Accordingly, we found it very difficult to produce trees that were realistic in terms of branching tempo in our second wave initial conditions, where the founding species occupies a single deme (Fig. 2A), but we were still able to do so in our mixed colonization conditions, where the founding species occupies half of the demes (Fig. 2B).

In summary, we found that a necessary condition for obtaining realistic trees with our model was that an initially abundant and widespread species diversifies through local speciation into a set of rarer species. Our model does not explain these initial conditions. However, they could correspond to an ecological scenario in which a virgin territory is colonized from a distant source, with the initial species first dispersing across the entire territory before starting to speciate. An alternative scenario is the colonization of a new niche after the evolution of a key innovation, if this results in a new species that is very successful and thus abundant and widespread. While this setting invokes an adaptive (i.e., nonneutral) explanation for the formation of a new guild, the following radiation dynamics within that guild can be neutral. Indeed, our results suggest that if the original widespread species diversifies into rarer (less likely to diversify) species, a slowdown in diversification rates emerges even if these new species are all functionally equivalent, and thus does not necessarily reflect the saturation of ecological niche space. Accordingly, empirical trees such as those we have analyzed here mostly correspond to higher taxa (e.g., genera, families), and these can be seen as lineages that have evolved subsequent to the colonization of new geographic areas and/or the occupation of distinct adaptive zones following key innovations (e.g., shifts in diet or in habitat) (Humphreys and Barraclough 2014).

The need for protracted speciation paired with preequilibrium conditions to generate realistic phylogenetic trees provides...
an interesting parallel to the results of Rosindell et al. (2015), who found that adding selection to a community model results in phylogenetic trees with a slowdown in diversification rates. Indeed, both in our neutral model at preequilibrium and in a selection model, the slowdown in diversification rates over time can be explained through innovations creating new clades that have not yet finished radiating. But whereas our preequilibrium phase the radiation of a new clade is the result of a large initial evolutionary advantage (e.g., as the result of a major innovation or the colonisation of a new area), in a selection model small advantages manifest continuously to prevent the system from reaching equilibrium.

Overall, then, our results reinforce the suggestion that the shape of empirical phylogenetic trees may reflect nonequilibrium dynamics, and demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a neutral model.

AUTHOR CONTRIBUTIONS
A.S.L.R., A.M., and A.S.B.L. designed the project; A.S.B.L. wrote the models (with support from A.M. and A.E.), performed the modeling work and analyzed the output data; all authors participated in the discussion of the results; ASBL wrote the first draft of the manuscript; all authors commented on the manuscript.

ACKNOWLEDGMENTS
We are grateful to F. Laroche and F. Jabot for very constructive discussions and to O. Gimenez for technical support. We also thank J. Rosindell, A. Hurlbert, and two other (anonymous) referees for constructive comments that much contributed to improving the manuscript.

DATA ARCHIVING
The doi for our data is 10.5061/dryad.98283

LITERATURE CITED

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Supporting Information

Associate Editor: E. Kisdi
Handling Editor: M. Servedio